Paramagnetic phases of Kagome lattice quantum Ising models

Predrag Nikolić

In collaboration with T. Senthil
Massachusetts Institute of Technology

Overview

- Introduction
 - Quantum Ising models
 - Motivation
- Transverse field Ising model on the Kagome lattice
 - Dynamics of individual spins
 - Disordered phase for all strengths of transverse field
- XXZ model on the Kagome lattice
 - Dynamics of frustrated bonds
 - Disordered, spin liquid and valence-bond ordered phases

Quantum Paramagnetic Phases

Singlet valence-bond:
$$| \bullet \bullet \rangle \sim \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}$$

staggered VBC

plaquette VBC

spin liquid (RVB)

Promising spin systems:

Checkerboard

Kagome

Pyrochlore

Models

Transverse field quantum Ising model (TFIM)

$$H = J_z \sum_{\langle ij \rangle} S_i^z S_j^z - \Gamma \sum_i S_i^x$$

,
$$\Gamma \ll J_z$$

XXZ model: total Ising spin conserved

$$H = J_z \sum_{\langle ij \rangle} S_i^z S_j^z + J_{\perp} \sum_{\langle ij \rangle} (S_i^x S_j^x + S_i^y S_j^y)$$

,
$$|J_\perp| \ll J_z$$

- $S = \frac{1}{2}$
- Nearest-neighbor Ising interaction
- Further-neighbor and multiple-spin exchange dynamics
- What phases are possible?

Motivation for Kagome Ising Models

- Kagome Heisenberg a.f.
 - Seemingly gapless modes in absence of continuous symmetry breaking
 - Easy-axis anisotropy ⇒ XXZ model
- Kagome Ising a.f. in weak transverse fields
 - Disordered ground-state

Ch. Waldtmann

H.-U. Everts

B. Bernu

P. Sindzingre

C. Lhuillier

P. Lecheminant

L. Pierre

R. Moessner

S. L. Sondhi

- Search for unconventional quantum phases
- Conditions in which various phases occur
 - Kagome phases: disordered, spin liquid, VBC

U(1) Gauge Theory: Spin Picture

$$H_z = J \sum_{\langle ij \rangle} S_i^z S_j^z = \frac{J}{2} \sum_{\triangle} \left(\sum_{i \in \triangle} S_i^z \right)^2 + \text{const.}$$

■ Minimum frustration ⇒ local constraint

$$(\forall \triangle_p) \quad s_p^z = \sum_{q \in p} S_{\langle pq \rangle}^z \in \left\{ \pm \frac{1}{2} \right\}$$

- U(1) gauge theory on honeycomb lattice
 - Electric field vector E_{pq}
 - Charged boson n_p

Mapping	lattice		quantity		condition
Kagome	site i	triangle \triangle_p	S_i^z	S_p^z	min. frustration
honeycomb	bond $\langle pq \rangle$	site p	E_{pq}	n_p	Gauss' Law

Analysis

- 2D compact U(1) gauge theory with bosonic matter field
 a non-topological disordered phase exists (in 2D)
- 1. Duality transformation
 - ⇒ integer-valued gauge theory on triangular lattice study dynamics of vortices
- 2. Relax integer-constraints
 - ⇒ sine-Gordon theory
- 3. Integrate out high-energy fields
 - ⇒ effective XY model with 3-state anisotropy
- 4. Find continuum limit
 - ⇒ field theory, explore the phase diagram

Phases: Transverse Field Ising Model

- Disordered non-topological phase (Higgs) agrees with Monte-Carlo (Moessner, Sondhi)
- Valence-bond ordered phase broken translational symmetry (3-fold degeneracy) broken global Z₂ symmetry

Dominant hexagon ring exchange...

Ordered phase is perhaps related to the plateau in magnetization curve

U(1) Gauge Theory: Bond Picture

- Frustrated bond |↑↑⟩ ⇔ dimer
- Minimal frustration:
 - one dimer per Kagome triangle
 - many degenerate "ground-states"

- Quantum fluctuations lift degeneracy
- How: Quantum dimer model on the dice lattice
- Order-by-disorder?
 - entropically selected ordered state?

Outline of Calculations

- Dice lattice is bipartite
 - quantum dimer model ⇔ compact U(1) gauge theory
- Dimers are soft-core
 - bosonic matter field in the gauge theory
 - distinguishes Kagome from other 2D frustrated systems
 - disordered phases are possible

- Duality transformation
 - lattice field theory ("height" model)
- Exploring the phase diagram
 - field-theoretical methods: "extended mean-field"

Extended Mean-Field Method

- Mean-field state is determined by minimum of energy and maximum of entropy

 minimize "free energy"
- Take into account effects of quantum fluctuations ⇒ seek order-by-disorder

Formalism:

- Consider a path-integral with action $S(\Phi)$
- Calculate free energy $F(\Phi_0)$ of a *microstate* Φ_0 :

$$e^{-F(\Phi_0)} = \int \mathcal{D}\Phi \ e^{-S(\Phi)-m^2 \int d^d \mathbf{r} \left(\Phi(\mathbf{r})-\Phi_0(\mathbf{r})\right)^2}$$

• Find the microstates Φ_0 that minimize $F(\Phi_0)$

Transverse Field Ising Model

Dimer flips consistent with minimal frustration:

- Result: "disorder-by-disorder"
 - entropically selected states are macroscopically numerous and generally disordered

- No phase transitions as $\Gamma \to \infty$
- Agrees with Monte-Carlo:

R. Moessner, S. L. Sondhi; Phys. Rev. B **63**, 224401 (2001)

Different theory, same result: U(1) gauge theory on the honeycomb lattice

XXZ and Spin-Conserving Models

More complicated dimer dynamics:

Result: two possible phases

- valence-bond crystal (XXZ)
- spin liquid (multiple-spin exchange...)

Any phase with no broken lattice symmetries and conserved total Ising moment has topological order.

XXZ Variational States

$$H = J_z \sum_{\langle ij \rangle} S_i^z S_j^z \pm J_\perp \sum_{\langle ij \rangle} (S_i^x S_j^x + S_i^y S_j^y) \qquad , \qquad 0 < J_\perp \ll J_z$$

- J_z : Minimize Ising frustration
- J_{\perp} : Maximize the number of valence-bonds: $|\Longrightarrow\rangle \sim |\uparrow\downarrow\rangle \mp |\downarrow\uparrow\rangle$
- J_{\perp} : Minimize the cost of *defect* triangles by maximizing the number of *perfect* hexagons

XXZ Variational States

Visual overlap between the entropically selected state and variational states:

$$| \longrightarrow \rangle \sim | \uparrow \uparrow \rangle \vee | \downarrow \downarrow \rangle$$

$$| \longrightarrow \rangle \sim | \uparrow \downarrow \rangle \mp | \downarrow \uparrow \rangle$$

$$| \bigcirc \rangle \sim | \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \rangle \mp | \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \rangle$$

Valence-bond order proposed for the Heisenberg model P. Nikolic, T. Senthil; Phys. Rev. B $\bf 68$, 214415 (2003)

Conclusions: Kagome Ising Phases

type of dominant Ising dynamics:	simple short-ranged	multiple-spin and ring exchange	
does not conserve $\sum_{i} S_{i}^{z}$	disordered (TFIM)	disordered	
conserves $\sum_{i} S_{i}^{z}$	valence-bond crystal (XXZ)	spin liquid	
hexagon ring-exchange	magnetized valence-bond crystal		

Valence-bond order proposed for the Heisenberg model

Found in the effective \mathbb{Z}_2 gauge theory of the "gapless" singlets